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Percolating granular superconductors
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We investigate diamagnetic fluctuations in percolating granular superconductors. Granular superconductors
are known to have a rich phase diagram including normal, superconducting, and spin-glass phases. Focusing on
the normal-superconducting and the normal-spin-glass transition at low temperatures, we study the diamag-
netic susceptibilityx (1) and the mean square fluctuations of the total magnetic momentx (2) of large clusters.
Our work is based on a random Josephson network model that we analyze with the powerful methods of
renormalized field theory. We investigate the structural properties of the Feynman diagrams contributing to the
renormalization ofx (1) andx (2). This allows us to determine the critical behavior ofx (1) andx (2) to arbitrary
order in perturbation theory.
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I. INTRODUCTION

The discovery of high-temperature superconductiv
raised hope of an important role of this phenomenon in
plications requiring high current densities, such as pow
transmission lines and high-field magnets. The most se
factor limiting current densities is that all practical materia
contain defects such as impurities, grain boundaries,
other extended defects. Thus, it is important to investig
the role of disorder in superconductivity.

Percolation theory@1# plays a predominant role in th
study of disordered systems. In the course of years, it
been applied to granular superconductors in many ways@2#.
The diamagnetic properties of disordered composites of
perconducting and nonsuperconducting materials can
studied in terms of a percolation model where supercond
ing grains are located on the sites of a (d-dimensional! hy-
percubic lattice and where Josephson junctions occupy n
est neighbor bonds with a given probabilityp. In the
following, we will refer to such a network as a random J
sephson network~RJN! @3#.

The phase diagram of the RJN has a rich structure
pending on the occupation probabilityp, the temperatureT,
and an external magnetic fieldB. This phase diagram wa
explored in a seminal work by John and Lubensky~JL! @4#.
Viewing the unoccupied bonds as normal conductors,
has a normal phase, a Meissner phase, and a spin-glass~SG!
phase. For type II superconducting materials, one has in
dition an Abrikosov flux lattice phase. Forp below the per-
colation thresholdpc , there can be only finite superconduc
ing clusters and hence there is no macrosco
superconductivity. Forp exceedingpc , there exists at leas
one spanning cluster and the phase depends onB. As p
→pc at B50, one encounters for sufficiently low temper
tures a transition from the normal to the Meissner ph
~henceforth, we refer to this transition as transition I!. This
Meissner phase has its typical hallmarks, viz., expulsion
magnetic flux and a nonvanishing average condensate w
function. For B.0, the system crosses over between
1063-651X/2003/67~4!/046115~17!/$20.00 67 0461
-
r
re

d
te

as

u-
y
t-

ar-

-

e-

e

d-

ic

e

f
ve
e

normal and the SG phase aspc is approached at lowT ~this
transition will be referred to from now on as transition II!.
The SG phase is characterized by a vanishing average
densate wave function but nonvanishing Edwards-Ander
order parameter@5#.

Early theoretical work on the transition I dates back to t
beginning 1980s. It was predicted by de Gennes@6# and Al-
exander@7# that the configurationally averaged diamagne
susceptibilityx (1) diverges as

x (1);up2pcu2w ~1.1a!

with

w52n2t, ~1.1b!

wheren is the percolation correlation length exponent ant
ist the conductivity exponent of the random resistor netw
~RRN!. A few years later John, Lubensky, and Wang~JLW!
@8# presented a renormalization group analysis of the R
based on a replicated Landau-Ginzburg-Wilson~LGW! type
continuum model introduced in Ref.@4#. They studiedx (1) as
well as the mean square fluctuationsx (2) of the total mag-
netic moment for transitions I and II. Their results obtain
in a perturbation calculation to one-loop order support
prediction ~1.1!. Moreover, their calculations resulted i
x (2)50 for transition I andx (1)50 for transition II.x (2) was
found to diverge at transition II as

x (2);up2pcu t222n, ~1.2!

where t2 is a crossover exponent distinct fromt. Roux and
Hansen@9# carried out numerical work to calculatew for d
52 dimensions. As JLW, Roux and Hansen relied on line
ized network equations. Their resultw51.3660.02 agrees
well with the scaling relation~1.1b! if the established values
for n and t are inserted. Wang and Lubensky@10# utilized a
low concentration series expansion to determinew for d
52. Their resultw51.2160.03, however, is inconsisten
with the scaling relation~1.1b!. Recently, Knudsen and
Hansen@11# carried out numerical simulations avoiding th
©2003 The American Physical Society15-1
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linearizations involved in Refs.@4,8,9#. They obtainw51.2
in agreement with the series expansion result of Ref.@10#.

Last but not least in our little historical reminiscence w
quote experimental values for the exponentw. Misra and
Misiak measuredw51.32 @13# andw51.45 @14#.

It appears that a linearization of the network equations
a crucial effect ind52, whereas it gives consistent results
higher dimensions. To our opinion this is plausible beca
the RJN is intimately related to the dilutedxy model @12#.
Hence, one should expect that vortex excitations become
portant ind52 and that a linearized description, correspon
ing to a spin wave approximation, is insufficient in this ca
Indeed, experiments on artificial RJN ind52 without exter-
nal magnetic field show that the Kosterlitz-Thouless tran
tion of the two-dimensionalxy model persists strong dilution
@15#. There exists additional evidence obtained by exp
ments@16# and simulations@17# that the properties of two
dimensional RJN differ significantly from the highe
dimensional case.

The previous paragraphs indicate that the status of
magnetism in the RJN has several ramifications. On this
sis, it is hard to draw reliable conclusions on the nature of
diamagnetism in granular superconductors. Further work
this subject seems to be in order.

In this paper, we determine the scaling behavior ofx (1)

andx (2) for transitions I and II in higher dimensions by th
powerful methods of renormalized field theory@18#. Our ap-
proach is based on the LGW-type Hamiltonian introduced
JL. Using dimensional regularization and minimal subtra
tion, we explore the renormalization ofx (1) andx (2). Upon
analyzing the general structure of the Feynman diagra
contributing to these renormalizations, we derive the criti
behavior ofx (1) and x (2) to arbitrary order in perturbation
theory.

The outline of this paper is as follows. In Sec. II, w
provide background on the model underlying our work.
first, we concretize the definition of the RJN and sketch
microscopic description. We mention the key physical qu
tities that are implicit in the microscopic model, such as
average tunneling current, and explain how they might
calculated by using the replica formalism. Then we conde
the microscopic into a mesoscopic model that is represe
by a field theoretic HamiltonianH. Our final expression for
H is corroborated by a subsequent scaling analysis. In
ticular, the irrelevance of a certain coupling associated w
T2 is revealed. Then we elaborate on several physical qu
tities that are native in the mesoscopic description. We g
their definitions and explain how to extract them in the re
lica framework. A brief review of the RJN phase diagra
concludes Sec. II. Section III contains the core of our ren
malization group analysis. We gather the diagrammatic
ments that are the ingredients of our perturbation calculat
Then we take a short detour and outline the renormaliza
and the scaling behavior of the order parameter correla
functions. This provides some background for our main ta
the analysis ofx (1) and x (2). Next, we calculate the Feyn
man diagrams contributing tox (1) andx (2) at one-loop order.
Equipped with some intuition about these diagrams, we t
determine their structural properties for arbitrary order in
04611
s

e

-
-
.

i-

i-

a-
a-
e
n

y
-

s
l

t
s
-

e
e
e

ed

r-
h
n-
e
-

r-
e-
n.
n
n

k,

n
e

loop expansion. At the end of Sec. III, we describe the ren
malization ofx (1) andx (2), set up the corresponding reno
malization group equations, and determine the scaling
havior. In Sec. IV, we give a brief summary and concludi
remarks. Technical details on the derivation of the f
Gaussian propagator for the RJN can be found in Appen
A.

II. THE MODEL

A. The random Josephson network

As mentioned briefly in the Introduction, an RJN consis
of superconducting grains located at the sitesi of a
d-dimensional hypercubic lattice. Bonds between nea
neighboring sites are randomly occupied with probabilityp
by Josephson junctions and, respectively, empty with pr
ability 12p @19#. Each grain is characterized by a conde
sate wave function

C i5Ar exp~ iu i !. ~2.1!

Note that the density of Cooper pairs on each grain is
sumed to be a constantr and that only the phaseu i is al-
lowed to fluctuate. The fixed amplitude approximation n
glects charging effects due to quantum fluctuations@20#. It is
justified for grain sizes of the order of or smaller than bo
the bulk superconducting coherence length and the Lon
penetration depth for the grains.

The form of the wave function~2.1! leads within the tight
binding model to a quantum-mechanical expectation va
for the total energy given by

H52(
^ i , j &

Ki , j cos~d i , j !. ~2.2!

Ki , j is a hopping matrix element for the Cooper pairs. Her
is a random variable that takes on the value 1 with proba
ity p and the value 0 with probability 12p. The sum in Eq.
~2.2! runs over all nearest neighbor pairs^ i , j &. The quantity

d i , j5u i2u j2Ai , j ~2.3!

describes the phase difference between adjacent sites a

Ai , j5e* E
i

j

A•dl. ~2.4!

Heree* is an abbreviation for 2p/F0 with F0 being the flux
quantum. The line integral is taken over an arbitrary diff
entiable curve fromi to j. A is the vector potential. We con
sider the gauge fieldA being entirely determined by a fixe
external magnetic field and neglect fluctuations inA. Expres-
sion ~2.2! governs the equilibrium statistical mechanics
the RJN and represents a Hamiltonian in the sense of st
tical mechanics. Note the following important feature ofH: it
is invariant under the gauge transformation

u i→u i1a~ i !, ~2.5!
5-2
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PERCOLATING GRANULAR SUPERCONDUCTORS PHYSICAL REVIEW E67, 046115 ~2003!
A→A2
1

e*
¹a, ~2.6!

wherea is an arbitrary scalar function of the space coor
nate.

A fundamental role in the RJN is played by the tunneli
currents

I i , j52
]H

]Ai , j
52Ki , j sin~d i , j !. ~2.7!

Their averages and correlation functions represent interes
observable quantities. Averaging over thermal degrees
freedom, henceforth indicated by^•••&T , may be discussed
via the free energy

FT52T ln Z, ~2.8!

with the partition functionZ given by

Z5E Du exp~2T21H !. ~2.9!

For convenience we have set the Boltzmann constant e
to one.*Du is an abbreviation for*) idu i , where the prod-
uct is taken over all lattice sites.

Of course, a meaningful characterization of the statist
properties of the RJN requires more than just thermal a
aging. In addition, a quenched average@•••#C over all pos-
sible configurationsC of the diluted network needs to b
performed. This average can be achieved with help of
replica trick.n copies of the network are considered sim
taneously upon introducing the replicated Hamiltonian

H~$dW %!5 (
a51

n

H~$d (a)%!52 (
a51

n

(
^ i , j &

Ki , j cos~d i , j
(a)!,

~2.10!

wheredW 5(d (1), . . . ,d (n)). With this trick, the configuration-
ally averaged free energy

F52T@ ln Z#C ~2.11!

can be written as

F5 lim
n→0

1

n
Fn ~2.12!

with

Fn52T ln@Zn#C . ~2.13!

The key benefit of this procedure is that the problem of
eraging lnZ is basically replaced by the easier task of av
agingZn. From the free energy, various quantities of inter
can be extracted upon taking derivatives. The average
rent is given by
04611
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n→0

]Fn

]Ai , j
(a)

. ~2.14!

The derivation of correlation functions in the replica fram
work requires a little caution. Note that

Ci , j
(a,b)52 lim

n→0

]2Fn

]Ai , j
(a)]Ai , j

(b)
~2.15!

splits up into a replica diagonal and a replica independ
part. Due to the permutation symmetry between the repli
Ci , j

(a,b) is of the form

Ci , j
(a,b)5Ci , j

(1)da,b1Ci , j
(2) , ~2.16!

with

Ci , j
(1)5T21$@^I i , j

2 &T#C2@^I i , j&T
2#C%2Ec ~2.17!

and

Ci , j
(2)5T21$@^I i , j&T

2#C2@^I i , j&T#C
2 %. ~2.18!

The Ec emerging in Eq.~2.17! stands for the condensatio
energy

Ec5@^Ki , j cos~d i , j !&T#C . ~2.19!

B. Field theoretic Hamiltonian

Now we proceed towards a field theoretic model for t
RJN. The following derivation of a field theoretic Hami
tonian is guided by the work of JL.

Our starting point is the observation that the@Zn#C ap-
pearing in Eq.~2.12! can be written as

@Zn#C5E DuW exp~2T21Heff! ~2.20!

with an effective Hamiltonian

Heff52 ln†exp@2T21H~$dW %!#‡C . ~2.21!

By virtue of the replica approach, we can perform t
quenched average once and for all at this early stage.
leads to

Heff5(
^ i , j &

K~dW i , j !, ~2.22!

with

K~dW !52 lnF11y expS T21 (
a51

n

cos~d (a)!D G , ~2.23!

wherey5p/(12p). In Eq. ~2.22!, we have dropped a con
stant termNBln(12p), whereNB stands for the number o
bonds in the undiluted lattice.
5-3
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Next, we adopt ideas developed by Stephen@21# in the
context of the RRN. The idea here is to introduce the qu
tity

clW ~ i !5exp~ ilW •uW i !, lW Þ0W . ~2.24!

As we go along, this quantity will grow into the role of a
order parameter field. ThelW appearing in Eq.~2.24! is an
n-component vector in replica space,lW 5(l (1), . . . ,l (n)).
The dot product in Eq. ~2.24! is defined as lW •uW

5(a51
n l (a)u (a). The conditionlW Þ0W is imposed in order to

qualify clW ( i ) as an order parameter. This is simply becau
c0W( i ) is equal to 1 and hence, being a constant, not cap
of sensing a phase transition. The componentsl (a) are cho-
sen to take on integral values. With this choice, the expilW

•uW) represent a complete set of orthonormal functions sa
fying the orthonormality and completeness relations

1

~2p!nE2p

p

dnu exp~ ilW •uW !5dlW ,0W ~2.25a!

and

1

~2p!n (
lW

exp~2 ilW •uW !5d~uW !. ~2.25b!

Based on these relations, one can define the replica s
Fourier transform

f~uW ,i !5 (
lW Þ0W

exp~2 ilW •uW !clW ~ i ! ~2.26!

of clW ( i ). Note that the conditionlW Þ0W on clW ( i ) transforms
into the condition

1

~2p!nE2p

p

dnuf~uW ,i !50 ~2.27!

on f(uW ,i ). Thus,f(uW ,i ) can be interpreted as a~continu-
ously indexed! Potts spin@22#.

Now we expandK(dW i , j ) in terms of clW ( i ). Rewriting
K(dW i , j ) as

K~dW i , j !5E
2p

p

dnd K~dW !d~dW 2dW i , j !, ~2.28!

we obtain after a little algebra

K~dW i , j !5 (
lW Þ0W

clW ~ i !c2lW ~ j !exp~2 ilW •AW i , j !K̃~lW !.

~2.29!

K̃(lW ) is defined as the replica space Fourier transform
K(dW ),
04611
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1

~2p!nE2p

p

dnd exp~ ilW •dW !K~dW !. ~2.30!

In writing Eq. ~2.29!, we have dropped a constant ter
K̃(0W ). To evaluate Eq.~2.30! further, we insert Eq.~2.23!
and expand the logarithm. We arrive at

K̃~lW !5(
l 51

`
~21! l

l
y lFl~lW !, ~2.31!

with

Fl~lW !5
1

~2p!nE2p

p

dnd

3expF (
a51

n

@ il (a)d (a)1 lT21 cos~d (a)!#G .

~2.32!

The integral in Eq.~2.32! can be evaluated in the low
temperature limit by employing the saddle point metho
Note that this step amounts to linearization of the netw
equations, or in other words, to a spin wave approximati
For n→0, this procedure leads to

K̃~lW !5t1wlW 21O~T2!, ~2.33!

where t5t(p) and w5w(p,T);T are expansion coeffi-
cients. In Sec. II C, we will show explicitly that higher-orde
terms in Eq.~2.33! lead to irrelevant contributions in th
field theoretic formulation, and that, hence, their omission
justified.

Collecting we find the following expression for the effe
tive Hamiltonian:

Heff5(
^ i , j &

(
lW Þ0W

clW ~ i !c2lW ~ j !exp~2 ilW •AW i , j !$t1wlW 21•••%.

~2.34!

At this stage, we carry out a gradient expansion. We hav
pay regard to the fact that the effective Hamiltonian as giv
in Eq. ~2.34! is invariant under the gauge transformation

clW ~ i !→clW ~ i !exp@ ilW •aW ~ i !#, ~2.35a!

A¢ ~ i !→A¢ ~ i !2
1

e*
¹aW ~ i !. ~2.35b!

Hence, we must keep only those terms in the gradient exp
sion that comply with this invariance. We obtain

Heff5
1

2 (
i

(
bi

(
lW Þ0W

clW ~ i !

3H 11
1

2
@bi•„¹2 ie* lW •A¢ ~ i !…#2J

3c2lW ~ i !$t1wlW 21•••%, ~2.36!
5-4
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where the second sum runs over all lattice vectorsbi between
site i and its nearest neighbors.

We proceed with the usual coarse graining step and
placeclW ( i ) by the order parameter fieldclW (x). The order
parameter field inherits the constraintlW Þ0W . Then, a mesos
copic free energy in the spirit of Landau is devised. Guid
by Eq.~2.36!, we write down the Landau-Ginzburg-Wilson
type Hamiltonian

H5E ddxH 1

2 (
lW Þ0W

c2lW ~x!K~¹,lW ,A¢ !clW ~x!

1
g

6 (
lW ,lW 8,lW 1lW 8Þ0W

c2lW ~x!c2lW 8~x!clW 1lW 8~x!J ,

~2.37!

where terms of higher order in the fields have been negle
since they turn out to be irrelevant. The kernel appearing
the Eq.~2.37! is given by

K~¹,lW ,A¢ !5t1wlW 22@¹2 ilW •A¢ #2. ~2.38!

The coefficientst andw should be understood as the coar
grained analogs of the original coefficients featured in E
~2.36!. Similarly, the A¢ in the kernel ~2.38! is a coarse
grained version of the original gauge field. The coa
grainedA¢ is defined so that it incorporates the chargee* .

It must be emphasized thatH is invariant under the gaug
transformation

clW ~x!→clW ~x!exp@ ilW •aW ~x!#, ~2.39a!

A¢ ~x!→A¢ ~x!2¹aW ~x!, ~2.39b!

with the components ofaW being arbitrary scalar functions o
x. This gauge invariance will have important consequen
as we go along.

We point out thatH resembles for vanishingA¢ the form
of the field theoretic Hamiltonian for the RRN as studied
Harris and Lubensky@23# and the present authors@24,25#.
For vanishingA¢ , the only formal distinction resides in th
different domains oflW . In the limit w→0 @26#, however, this
difference has no consequence and the perturbation ex
sions for the RJN and the RRN coincide. Forw50, in par-
ticular, both models reduce to purely geometric percolati

C. A note on relevance

Here we will show that it is indeed justified to truncate t
expansion~2.33! at first order inT. In other words, we will
show that the higher-order terms are irrelevant in the sens
the renormalization group. Our actual tool will be a scali
analysis in the replica variablelW .

Now suppose we had retained higher-order terms in
expansion~2.33!; then the kernel ofH would be of the form
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e-

d

ed
in

.

e

s

an-

.

of

e

K~¹,lW ,A¢ !5t1wlW 21 (
k52

`

wklW
2k2@¹2 ilW •A¢ #2

~2.40!

with wk;Tk. We facilitate our scaling analysis by settin
lW →b21lW , whereb is some scaling factor. Upon substitutin
clW (x)5cb21lW

† (x) into the Hamiltonian, we get

H@cb21lW
†

~x!,A¢ ~x!;t,w,$wk%#

5E ddxH 1

2 (
lW Þ0W

cb21lW
†

~x!K~¹,lW ,A¢ !c
2b21lW
†

~x!

1
g

6 (
lW ,lW 8,lW 1lW 8Þ0W

c
2b21lW
†

~x!c
2b21lW 8
†

~x!

3cb21lW 1b21lW 8
†

~x!J . ~2.41!

Renaming the scaled replica variableslW †5b21lW leads to

H@clW †
†

~x!,A¢ ~x!;t,w,$wk%#

5E ddxH 1

2 (
lW Þ0W

clW †
†

~x!K~¹,blW †,A¢ !c
2lW †
†

~x!

1
g

6 (
lW ,lW 8,lW 1lW 8Þ0W

c
2lW †
†

~x!c
2lW 8†

†
~x!c

lW †1lW 8†

†
~x!J . ~2.42!

Now we are going to exploit an important feature of t
summations over the replica variablelW . In the low-
temperature limit, i.e., forw→0, the summation(lW Þ0W•••

can be replaced by the integration*2`
` dnl . . . . Poisson’s

summation formula guarantees that the neglected terms
of the order exp(2const/w) @27#. In the continuum formula-
tion, the rescaling leads tobn*2`

` dnl† . . . . Hence, the scal-
ing factorb drops out in the limitn→0 and we can identify
lW † with lW . We are led to the conclusion

H@cb21lW ~x!,A¢ ~x!;t,w,$wk%#

5H@clW ~x!,bA¢ ~x!;t,b2w,$b2kwk%#. ~2.43!

Next we consider the implications of Eq.~2.43! on the
free energy. In the present field theoretic formulation,
Helmholtz free energy is defined as

F@A¢ ~x!;T,t,w,$wk%#52T ln Z ~2.44!

with the partition function

Z5E Dc exp„2T21H@clW ~x!,A¢ ~x!;t,w,$wk%#….

~2.45!

Here,Dc indicates an integration over the set of variab

$clW (x)% for all x andlW . Equation~2.43! implies that
5-5
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F@A¢ ~x!;T,t,w,$wk%#5F@bA¢ ~x!;T,t,b2w,$b2kwk%#.
~2.46!

Of course, we are free to choose the scaling parameter to
liking. With the choiceb25w21, we obtain

F@A¢ ~x!;T,t,w,$wk%#5FFw21/2A¢ ~x!;T,t,1,H wk

wkJ G .

~2.47!

We learn from Eq.~2.47! that the coupling constantswk ap-
pear only in the combinationwk /wk. A trivial consequence
of the fact that the HamiltonianH must be dimensionless i
thatwl2;m2 andwkl

2k;m2, wherem is an inverse length
scale. In other words,wl2 and wkl

2k have a dimension 2
Thus,wk /wk;m222k and hence thewk /wk have a negative
dimension. This leads to the conclusion that thewk /wk are
irrelevant couplings and that the leading critical behavior
the free energy is described by

F@A¢ ~x!;T,t,w#5 f @w21/2A¢ ~x!;T,t#, ~2.48!

wheref is some functional ofw21/2A¢ (x).
The fact thatw2 appears only in an irrelevant combinatio

was overlooked in Ref.@8#. This ultimatively led to an erro-
neous prediction for the scaling behavior ofx (2).

D. Current density, magnetization, and related quantities

In this section, we elaborate on various physical quanti
embedded in the field theoretic model. We provide, with
the replica framework, definitions of the current density a
the magnetization along with their averages and correla
functions. We explain the physical content of replica quan
ties and describe how it can be extracted.

The role occupied in the original microscopic model
the replicated tunneling currentsI i , j

(a) is taken in the field
theoretic formulation by the replicated current density

Ji
(a)~x!52

dH
dAi

(a)~x!
. ~2.49!

Note that the indexi specifies here the component of th
current density ind-dimensional space and should not
confused with the sitei.

The current density has a very important feature. It rep
sents the Noether current associated with the gauge in
ance of the HamiltonianH. Hence, it satisfies the conserv
tion relation

¹•J(a)~x!50. ~2.50!

Averages in the field theoretic formulation are declared
means of the functional integral

^•••&5
1

ZE Dc•••exp~2T21H!. ~2.51!
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Several of these averages can be extracted from the free
ergy introduced in Sec. II C. This free energy can be
panded as

F@A¢ #5F@0¢#2E ddx^Ji
(a)~x!&Ai

(a)~x!

2
1

2E ddxE ddx8Ci , j
(a,b)~x2x8!Ai

(a)~x!Aj
(b)~x8!

1•••, ~2.52!

where the summation convention is understood for the in
ces labeling space and replica coordinates;

^Ji
(a)~x!&52

dF
dAi

(a)~x!
U

A¢ 50¢

~2.53!

is the average replica current density. The second-order t
features the correlation function

Ci , j
(a,b)~x2x8!52

d2F
dAi

(a)~x!dAj
(b)~x8!

U
A¢ 50¢

5T21$^Ji
(a)~x!Jj

(b)~x8!&2^Ji
(a)~x!&

3^Jj
(b)~x8!&%2d~x2x8!

3d i , j (
lW Þ0W

l (a)l (b)^clW ~x!c2lW ~x8!&.

~2.54!

The relation between the field theoretic average of the rep
current density and the thermal and configurational aver
of the physical current density is straightforward:

lim
n→0

^Ji
(a)~x!&5@^Ji~x!&#C . ~2.55!

As far as correlation functions are concerned, the situatio
somewhat more subtle. The structure of the correlation fu
tions must be so that they are invariant under permutation
the replicas. Hence the two-point functions are of the for

Ci , j
(a,b)~x2x8!5Ci , j

(1)~x2x8!da,b1Ci , j
(2)~x2x8!

~2.56!

with

Ci , j
(1)~x2x8!5T21$@^Ji~x!Jj~x8!&T#C

2@^Ji~x!&T^Jj~x8!&T#C%2d i , jd~x2x8!Ec
(1) ,

~2.57!

and
5-6
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Ci , j
(2)~x2x8!5T21$@^Ji~x!&T^Jj~x8!&T#C

2@^Ji~x!&T#C@^Jj~x8!&T#C%

2d i , jd~x2x8!Ec
(2) , ~2.58!

where the replica limitn→0 is understood.Ec
(1) andEc

(2) are
the replica diagonal and the replica independent part of

Ec
(a,b)5 (

lW Þ0W
l (a)l (b)^clW ~x!c2lW ~x8!&. ~2.59!

From Eq.~2.57!, one learns that

Ci , j
(1)~x2x8!5@Ci , j~x,x8!#C ~2.60!

for n→0, i.e., the replica diagonal part ofCi , j
(a,b)(x,x8) cor-

responds to the average of the physical density current
relation functionsCi , j (x,x8) over all configurationsC. The
physical content ofCi , j

(2) will become clear below.
Now we shift focus and turn from the current densities

the magnetization and its correlations. An external magn
field can be introduced into the model via

Fi , j~x!5] iAj~x!2] jAi~x!. ~2.61!

For d53, this reduces to the usualB5rotA with the com-
ponents of the magnetic field given byB35F1,2 and so on.
HavingFi , j at hand, we can rewrite the expansion of the fr
energy as

F@A¢ #5F@0¢#2E ddx^Ji
(a)~x!&Ai

(a)~x!

2
1

4E ddxE ddx8C(a,b)~x2x8!Fi , j
(a)~x!Fi , j

(b)~x8!

1•••. ~2.62!

In recasting the second-order term, we have exploited th

] iCi , j
(a,b)~x!50 ~2.63!

by virtue of the gauge invariance and its manifestat
~2.50!. Due to Eq.~2.63!, the Fourier transform

C̃i , j
(a,b)~k!5E ddxCi , j

(a,b)~x!exp~2 ik•x! ~2.64!

of Ci , j
(a,b)(x) is of the form

C̃i , j
(a,b)~k!5~k2d i , j2kikj !C̃

(a,b)~k!. ~2.65!

The C(a,b)(x) in the expansion~2.62! is defined as nothing
but the Fourier transform ofC̃(a,b)(k).

In the remainder of this paper we will be concerned w
a homogeneous external magnetic field perpendicular to
1-2 plane (x-y plane!. In three dimensions, this correspon
to a B field pointing in the third direction (z direction!. We
formulate the envisaged magnetic field by setting

Ai~x!5 1
2 xkFk,i ~2.66!
04611
r-

ic

e

t

n

he

with

Fk,i5B~dk,1d i ,22dk,2d i ,1!. ~2.67!

With help of this expression, we obtain the free energy a
function of the replicated field amplitudeBW :

F~BW !5F~0W !2E ddxM(a)~x!B(a)

2
1

2E ddxE ddx8x (a,b)~x2x8!B(a)B(b)1•••,

~2.68!

where

M (a)~x!5
1

2
@^J2

(a)~x!&x12^J1
(a)~x!&x2# ~2.69!

and

x (a,b)~x2x8!5C(a,b)~x2x8!. ~2.70!

Adopting the usual definition of the magnetization in t
homogeneous field setup to the replica framework, we h

M (a)52
1

V

]F
]B(a) U

BW 50W

5
1

V
M tot

(a) , ~2.71!

whereV stands for the volume of the system andM tot
(a) is the

replica version of the total magnetic moment

M tot5E ddx M~x!. ~2.72!

The physical magnetizationM is retrieved by taking the limit
n→0. From Eq.~2.69!, one obtains immediately thatM van-
ishes forB50. Turning to the diamagnetic susceptibility, w
have

x (a,b)52
1

V

]2F
]B(a)]B(b) U

BW 50W

5
1

VE ddxE ddx8x (a,b)~x2x8!. ~2.73!

A glance at Eq.~2.70! brings about two important observa
tions. First, we see that

x (a,b)5C̃(a,b)~0!. ~2.74!

This relation will play an important role in our actual calc
lations. The second observation is that the diamagnetic
ceptibility should have the same replica structure as the
rent density correlations, i.e.,

x (a,b)5x (1)da,b1x (2). ~2.75!
5-7



n
g-

fly

t

e
s

tic

n-

r a
e
-

. The

ter is

ts,
r-

in

m-

the
pa-

eed
ia-

to
rm.

ible
en-

-
n-
el-

on

in
a

in

H.-K. JANSSEN AND O. STENULL PHYSICAL REVIEW E67, 046115 ~2003!
In the replica limit,x (1) has the physical content

x (1)5@x#C , ~2.76!

with x being the diamagnetic susceptibility for a given co
figurationC. x (2) contains the fluctuations of the total ma
netization. Forn→0, one has

x (2)5
1

VE ddxE ddx8T21$@M ~x!M ~x8!#C

2@M ~x!#C@M ~x8!#C%5T21$@M tot
2 #C2@M tot#C

2 %.

~2.77!

In the following, we will refer tox (1) and x (2) in a brief
fashion as susceptibilities.

E. Review of the phase diagram

In favor of a self-contained presentation, we now brie
review the phase diagram of the RJN@4#, see Fig. 1. In
mean-field theory, the phase diagram can be mapped ou
determining those combinations of the parametersp, T, and
B for which the Gaussian part ofH develops the eigenvalu
zero. For convenience, we write the space coordinatex
5(x,y,x'), wherex' lies in the (d22)-dimensional sub-
space perpendicular to thex-y plane. In the following, we
use the Landau gauge, i.e., we setAW (x)5(0,x,0'). The ei-
genvalues of the Gaussian part~the Landau levels! can be
determined by standard textbook methods. One finds

E~q' ,lW ,m!5t1q'
2 1wlW 21~2m11!uv~lW !u. ~2.78!

The momentumq' is the Fourier transform ofx' . m labels
the Landau levels and takes on the valuesm50,1,2, . . . .
v(lW ) is a cyclotron frequency given by

v~lW !5BW •lW . ~2.79!

FIG. 1. Schematic phase diagram of the RJN~arbitrary units!.
The critical surface~1! separates the insulating and the superc
ducting phase. The critical surface~2! lies between the insulating
and the SG phase. Both surfaces merge in a line of bicritical po
~solid!, where the insulating, the superconducting, and the SG ph
meet. Forw50, there is a critical line~dashed! separating the in-
sulating and the SG phase. At the origin, there is a critical po
~dot! between the three phases.
04611
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In the following, we will assume that the external magne
field is replica symmetric and writeB5B(a) for everya.

Obviously, the lowest eigenvalue is associated withq'

50' . Now assume thatw.0 andB.0. By inspection, one
finds following two modes associated with vanishing eige
values.

~i! One withlW 15(1,0, . . . ,0) andm50. It is soft, i.e., its
eigenvalue vanishes, fort1w1B50.

~ii ! One with lW 25(1,21, . . . ,0) andarbitrary m that is
soft for t12w50 ~note, that t1w1B5t12w for B
5w).

lW 1 and lW 2 should be understood as representatives fo
set of equivalent~i.e., identical up to a permutation of th
components! replica vectors. We identify two critical sur
faces. The surface specified byt52(w1B) and B,w
separates the insulating and the superconducting phase
order parameter for this transition is

^clW 1
~x!& →

n→0

@^eiux&T#C .

The surface corresponding tot522w andB.w separates
the insulating and the SG phase. Here, the order parame
of the Edwards-Anderson type,

^clW 2
~x!& →

n→0

@^eiux&T^e2 iux&T#C .

The two critical surfaces merge at a line of bicritical poin
given by t522w522B, where the insulating, the supe
conducting, and the SG phase meet.

Now we come to the transitions I and II that are the ma
concern of this paper. Admittingw50, one finds a critical
line specified byt5w50. Crossing over this line by tuning
t.0 (p,pc) to t,0 (p.pc), one gets from the insulating
to the SG phase. This is our transition II. The order para
eter here iŝ clW (x)& with all lW Þ0W satisfying(a51

n l (a)50.
Finally, there is the critical pointt5w5B50 that represents
the terminus of the two critical lines. Tuningt.0 to t,0
about this point, one crosses over from the insulating to
superconducting phase. This is our transition I. Its order
rameter iŝ clW (x)& with arbitrarylW Þ0W .

III. RENORMALIZATION GROUP ANALYSIS

A. Diagrammatic elements

To set up a diagrammatic perturbation expansion, we n
to identify the elements contributing to our Feynman d
grams. Evidently, there is the vertex2g/T. The Gaussian
propagator for the present problem is not straightforward
determine, at least not in a nonapproximate and closed fo
This is due to the presence of the gauge field. A poss
approach is to expand the propagator in terms of the eig
functions belonging to the Landau eigenvalues~2.78!. This
route was taken by Lawrie@28# in studying the related prob
lem of the LGW superconductor. By summing over all La
dau levels, Lawrie brought the LGW propagator into an

-
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egant form that made multiloop calculations tractable.
Appendix A, we present a simpler approach that allows u
derive the propagator directly without resorting to a exp
sion in terms of Landau levels. Yet, our approach reprodu
the closed form found by Lawrie. We obtain

Gbold~x,x8,lW !5T expF i
v~lW !

2
~x1x8!~y2y8!G

3E
k
G̃~k,lW !exp@ ik•~x2x8!#~12dlW ,0W !

~3.1a!

as the principal propagator for the RJN. Here,*k is the usual
shorthand notation for 1/(2p)d*ddk. G̃(k,lW ) is given by

G̃~k,lW !5E
0

` ds

cosh„v~lW !s…
expF2s„t~lW !1k'

2
…

2
tanh„v~lW !s…

v~lW !
~p21q2!G , ~3.1b!

wherep andq are conjugate tox andy, respectively.t(lW ) is
a shorthand notation fort1wlW 2. The factor (12dlW ,0W)
implements the constraintlW Þ0W .

We annotate that one could discuss the RJN phase
gram by analyzing the infrared behavior of the propaga
~3.1! instead of the minima of the Landau levels~2.78!. Ba-
sically, one just has to consider the limits→` and to deter-
mine the parameter combinations for which the propaga
becomes long range. Of course, one finds the phase dia
discussed in Sec. II E.

We observe that the principal propagator decomposes
two parts,

Gbold~x,x8,lW !5Gcond~x,x8,lW !2Gins~x2x8!. ~3.2!

One of them

Gcond~x,x8,lW !5T expF i
v~lW !

2
~x1x8!~y2y8!G

3E
k
G̃~k,lW !exp@ ik•~x2x8!# ~3.3!

carrieslW . The other one

Gins~x2x8!5TE
k

dlW ,0W

t1k2
exp@ ik•~x2x8!# ~3.4!

does not. The notation we use here reflects the close ana
to the RRN, wherelW plays essentially the role of a curren
For the RRN, the decomposition of the principal propaga
culminates in a real world interpretation@24,25,29–40# in
that the Feynman diagrams are viewed as conducting
works composed of insulating and conducting propagat
The insulating propagator~3.4! is identical in form to its
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counterpart for the RRN. The conducting propagator~3.3!
reduces formally to its analog for the RRN for vanishin
cyclotron frequency,

Gcond~x,x8,lW ! →
v→0

TE
k

exp@ ik•~x2x8!#

t1wlW 21k2
5G~x2x8,lW !.

~3.5!

ComparingG(x2x8,lW ) to the full conducting propagato
Gcond(x,x8,lW ), it is apparent that the perturbation theo
simplifies tremendously for vanishingv(lW ). This simplifica-
tion will allow us to study the susceptibilities at transitions
and II with reasonable effort.

B. Order parameter correlation functions

Here we will discuss the renormalization and the scal
behavior of the order parameter correlation functions

GN~$x,lW %;t,w,B,g!5^clW 1
~x1!, . . . ,clW N

~xN!&, ~3.6!

where we drop the redundant scaling variableT for nota-
tional simplicity. Though these correlation functions are n
the main concern of this paper, they deserve some atten
First, they are interesting in their own right. Second, th
discussion will provide some background for the subsequ
analysis of the susceptibilities. Most of the techniques we
going to use, such as dimensional regularization and mini
subtraction, belong to the standard repertoire of renormali
field theory, cf. Ref.@18#.

To remove ultraviolet~UV! divergences from the orde
parameter correlation functions, we use the renormaliza
scheme

c→c° 5Z1/2c, ~3.7a!

t→t°5Z21Ztt, ~3.7b!

w→w° 5Z21Zww, ~3.7c!

g→g°5Z23/2Zu
1/2G«

21/2u1/2T21/2m«/2, ~3.7d!

B→B° 5Z21/2ZBB, ~3.7e!

where the ° indicates unrenormalized quantities.m is the
usual inverse length scale.«562d specifies the deviation
from the upper critical dimension 6. The factorG«

5(4p)2d/2G(11«/2) is introduced for later convenience.
At first, we consider the role of the magnetic field. For t

closely related problem of the LGW superconductor, it w
demonstrated by Lawrie@28# in a two-loop calculation that

the B field does not require renormalization, i.e., thatB° 5B
up to second order in« expansion, and that the remainingZ
factors are independent ofB. One can show, however, tha
the validity of these findings is not limited to second ord
they are valid to arbitrary order in« expansion. We will
address these points in some detail in a forthcoming pa
5-9
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@41# on the LGW superconductor. The quintessential poi
can be sketched as follows: the nonrenormalization ofB is a
consequence of the gauge invariance. Exploiting this inv
ance, one can show that the current density renormal
trivially. Since the vector potential is conjugate to the curre
density, it does not require an independent renormaliza
factor also. In turn,B renormalizes trivially, i.e.,Z21/2ZB
51 to arbitrary order in« expansion. TheB independence o
the Z factors follows from the fact thatB is not dimension-
less at the upper critical dimension.

For the present problem, the reasoning of Ref.@41# has to
be modified somewhat. This is because the magnetic fi
appears in case of the RJN always in the combina
w21/2B;m as opposed to the pureB;m2 in case of the
LGW superconductor. As a consequence, the masst requires
in the present problem an additive renormalization prop
tional to B2. This subtlety has no consequence for our m
results and we will ignore it in the following.

The most economic way to determineZ, Zt , Zw , andZg
is to exploit the close relation of the RJN to the RRN. A
indicated earlier, the corresponding two diagrammatic exp
sions coincide forB50 in the replica limit. Furthermore, th
RRN reduces forw50 to purely geometrical percolation
Hence,Z, Zt , andZg are nothing but the usual percolationZ
factors known to third order in« expansion@42#. Zw may be
gleaned to second order in« from our work on the RRN
@24,25#.

Having determined theZ factors, we are now in the pos
tion to infer the scaling behavior of the order parameter c
relation functions from their renormalization group equati
~RGE!. This RGE is a manifestation of the fact that the u
renormalized theory has to be independent of the arbit
length scalem21 introduced by renormalization. Hence, th
unrenormalized correlation functions satisfy the identity

m
]

]m
G° N~$x,lW %;t° ,w° ,B° ,g° !50. ~3.8!

Equation~3.8! translates via the Wilson functions

g . . . ~u!5m
]

]m
ln Z . . .U

0

, ~3.9a!

b~u!5m
]u

]m U
0

5u~3g2gu2«!, ~3.9b!

k~u!5m
] ln t

]m U
0

5g2gt , ~3.9c!

z~u!5m
] ln w

]m U
0

5g2gw ~3.9d!

~the u0 indicates that bare quantities are kept fix while taki
the derivatives! into the RGE
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Fm ]

]m
1b

]

]u
1tk

]

]t
1wz

]

]w
1

N

2
gG

3GN~$x,lW %;t,w,B,u,m!50. ~3.10!

The RGE can be solved in terms of a single flow para
eter, by using the characteristics

,
]m̄

],
5m̄, m̄~1!5m, ~3.11a!

,
]ū

],
5b„ū~, !…, ū~1!5u, ~3.11b!

,
]

],
ln t̄5k„ū~, !…, t̄~1!5t, ~3.11c!

,
]

],
ln w̄5z„ū~, !…, w̄~1!5w, ~3.11d!

,
]

],
ln Z̄5g„ū~, !…, Z̄~1!51. ~3.11e!

These characteristics describe how the parameters trans
if we change the momentum scalem according to m

→m̄(,)5,m. Being interested in the infrared~IR! behavior
of the theory, we study the limit,→0. According to Eq.
~3.11b!, we expect that in this IR limit, the coupling consta
ū(,) flows to a stable fixed pointu* satisfyingb(u* )50.
The IR stable fixed point solution to the RGE is read
found. In conjunction with dimensional analysis~to account
for naive dimensions!, it gives

GN~$x,lW %;t,w,B,u,m!

5, (d221h)N/2GN~$,x,lW %;,21/nt,,2f/nw,,22B,u* ,m!

~3.12!

with the critical exponents for percolationh5g(u* ) andn
5@22k(u* )#21 known to third order in« @42#. f5n@2
2z(u* )# is the percolation resistance exponent known
second order in« @24,25,43#. We have not yet exploited the
freedom to choose,. By setting, for example,,5utun, we
find that the order parameter correlation functions scale

GN~$x,lW %;t,w,B,u,m!

5j2(d221h)N/2VN~$j21x,jf/2nw1/2lW %;j22f/2nw21/2B!,

~3.13!

wherej is the correlation length andVN is a scaling func-
tion.
5-10
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C. Susceptibilities

In this section, we discuss the renormalization of the s
ceptibilities as well as their scaling behavior for transition
and II. We start by analyzing the Feynman diagrams cont
uting to the susceptibilities. First, we consider the one-lo
order in some detail. More important than yielding concr
results, this provides us with some intuition about the gen
structure of the diagrams. Then, this general structure is
lyzed for diagrams with an arbitrary number of loops. W
demonstrate how to renormalize the susceptibilities prope
Finally, we derive their scaling behavior.

1. Diagrammatics: One-loop calculation

Our starting point here is the definition of the curre
density correlation functionCi , j

(a,b)(x2x8) in Eq. ~2.54!. At
first, we express this correlation function directly in terms
the order parameter field. Recall thatCi , j

(a,b)(x2x8) is de-
fined originally in terms of the current density

Ji
(a)~x!5 (

lW Þ0W

1

2i
l (a)@c2lW ~x!] iclW ~x!2clW ~x!] ic2lW ~x!#,

~3.14!

where we have setA¢ 50¢. Being a composite field, the curren
density is inconvenient to handle in actual calculatio
Hence, we substitute Eq.~3.14! into the current density cor
relation function. ThenCi , j

(a,b)(x2x8) is composed directly
of correlation functions of the order parameter field and
n
um
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derivatives. Next, we expand the weight exp(2T21H) in
powers of the coupling constantg/T. At the zeroth order in
g/T, we obtain

Ci , j
(a,b)~x2x8!5(

lW

1

2i
l (a)l (b)$T21@Gbold~x8,x,lW !

3] i] j8G
bold~x,x8,lW !

2] iG
bold~x,x8,lW !] j8G

bold~x8,x,lW !#

2d~x2x8!d i , jG
bold~0,lW !%. ~3.15!

Here it is understood that the bold propagator is evaluate
v(lW )50, since we focus on transitions I and II. Now w
decompose the bold propagator into its conducting and in
lating parts. We recall that the insulating propagator conta
a factordlW ,0W . Due to thel (a)l (b) in Eq. ~3.15!, all the terms
containing insulating propagators drop out. We obtain up
sendingx8→0

Ci , j
(a,b)~x!5(

lW

1

2i
l (a)l (b)$T21@G~x,lW !] i] jG~x,lW !

2] iG~x,lW !] jG~x,lW !#2d~x!d i , jG~0,lW !%.

~3.16!

Next we switch to momentum space. Applying the usu
Fourier transformation to Eq.~3.16! yields
C̃i , j
(a,b)~k!5T(

lW
l (a)l (b)E

q
H 2qiqj

@t~lW !1~q1k/2!2#@t~lW !1~q2k/2!2#
2

d i , j

t~lW !1q2J . ~3.17!

Since we are ultimately interested in the susceptibilities, we should look atC̃(a,b)(k) rather thanC̃i , j
(a,b)(k). Via taking the

trace on both sides of Eq.~2.65!, we find that

C̃(a,b)~k!5
2T

~d21!k2 (
lW

l (a)l (b)E
q
q2H 1

@t~lW !1~q1k/2)2@t~lW !1~q2k/2!2#
2

1

@t~lW !1q2#2J . ~3.18!
rt-
Here we have used that

E
q

d

t~lW !1q2
5E

q

1

@t~lW !1q2#2
~3.19!

in dimensional regularization. By virtue of the relatio
~2.74!, we obtain upon expansion in the external moment
k

x (a,b)52
T

6 (
lW
E

q

l (a)l (b)

@t~lW !1q2#2
. ~3.20!

This is the replica susceptibility at one-loop order.
We proceed with simplifying the summation overlW . In
Schwinger representation, this summation is of the form

(
lW

l (a)l (b) exp@2st~lW !#. ~3.21!

At this point, we find it convenient to introduce the sho
hand notation

^•••&l5(
lW

•••exp@2st~lW !#. ~3.22!

Revisiting Eq.~2.75!, we deduce that
5-11
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^l (a)l (b)&l5ada,b1b, ~3.23!

wherea andb are coefficients that need to be determined.
analyzing the casesa5b andaÞb, we find

a5
1

n~n21! Fn^lW 2&l2K S (
a51

n

l (a)D 2L
l
G , ~3.24!

b52
1

n~n21! F ^lW 2&l2K S (
a51

n

l (a)D 2L
l
G . ~3.25!

To evaluatea andb further, we now look at transitions I an
II separately. At the transition I, we haveB50. For B50,
the system is, like the RRN, rotationally invariant in repli
space and hencê((a51

n l (a))2&l5^lW 2&l . Consequently, we

havea5(1/n)^lW 2&l and b50. This leads for the suscept
bilities at transition I to

x (1)52
T

6n (
lW
E

q

lW 2

@t~lW !1q2#2
, x (2)50. ~3.26!

At transition II, we have(a51
n l (a)50 and thusa5O(n0)

and b5(1/n)^l2&l . For the susceptibilities at transition I
this leads to

x (1)50, x (2)52
T

6n (
lW
E

q

lW 2d(
a51
n l~a!,0

@t~lW !1q2#2
. ~3.27!

Now we are in the position to carry out the remaini
summations overlW along with the momentum integration
We outline the remaining steps at the instance ofx (2) at
transition II. Implementing the constraint(a51

n l (a)50 via
the integral (1/2p)*2p

p du exp(iu(a51
n l(a)), we have

x (2)52
T

6n (
lW

1

2pE2p

p

du

3expS iu (
a51

n

l (a)D E
q

lW 2

@t~lW !1q2#2
. ~3.28!

We find it convenient to use the Schwinger representa
and rewritex (2) as

x (2)52
T

6nE0

`

dss
1

2pE2p

p

duE
q

]

w]z (
lW

3expFxwlW 22s~t1wlW 21q2!1 iu (
a51

n

l (a)GU
z50

.

~3.29!

At this point, it is useful to exploit Poisson’s summatio
formula and approximate the summation(lW by the integra-
tion *2`

` dnl. This integration is Gaussian and it can
evaluated straightforwardly by completing squares in the
ponential. Next, we carry out the particularly simple mome
04611
y

n

-
-

tum integration. Since we eventually have to take the rep
limit n→0, we then expandx (2) in powers ofn. Upon taking
the derivative with respect toz and carrying out the integra
tion overu, we get in the replica limit

x (2)52
T

12E0

`

ds
e2st

~4ps!d/2 H 2
1

w
1

p2

6sw2J . ~3.30!

The remaining integration over the Schwinger parametes
represents no difficulty. For the renormalization group tre
ment that we have in mind, we will only need the UV dive
gent parts ofx (2). These are extracted in form of« poles by
expandingx (2) in powers of«. This provides us finally with
the following divergent parts ofx (2) for transition II:

xdiv
(2)52

Tt2

w

G«

12« H 11
p2

18

t

wJ . ~3.31!

Note that the one-loop result forxdiv
(2) given in Ref. @8# is

erroneous. It incorrectly featuresw2.
x (1) for transition I can be calculated in an analogo

manner. We merely need to replace the integration that
forces the constraint(a51

n l (a)50 by unity. This leads to the
result

xdiv
(1)52

Tt2

w

G«

12«
. ~3.32!

At this point, a comment on thet dependence of the susce
tibilities is in order. From a technical point of view, dimen
sional regularization is the most convenient way of deal
with UV divergences. However, dimensional regularizati
has some unphysical features which are intimately relate
its simplicity. In the less economic but more physical cut
regularization, one treats UV singularities by introducing
cutoff L and by replacing the full integration*q by * uqu<L .
This procedure leads typically to terms proportional to lnL
and terms varying as some power ofL. The logarithmic
divergences forL→` have their analog in dimensiona
regularization in form of the« poles. The terms algebraic i
L, however, are unaccounted for in dimensional regulari
tion. In case of the susceptibilities, this neglect conceals
sential physics. Hence, the terms algebraic inL must be
incorporated. We get

xdiv
(1)5

T

w FA0L41A1L2t2
G«

12«
t2G ~3.33!

and

xdiv
(2)5

T

w FA0L41A1L2t2
G«

12«
t2G

1
T

w2 FB0L61B1L4t1B2L2t22
p2G«

12~18«!
t3G ,

~3.34!

where theA’s andB’s are numerical coefficients.
5-12
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2. Diagrammatics: General structure

Higher orders in the expansion of the weig
exp(2H) in powers of the coupling constantg correspond to
multiloop diagrams. In Schwinger representation,
lW -featuring part of such a diagram is of the form

(
$kW %

l (a)l8(b)expF2(
p

spwlW p
2G . ~3.35!

Here,$kW % stands for a complete set of independent loop c
rents. The sums overp are taken over all conducting propa
gators. The currentslW p running through the conductin
propagators are linear functions of the loop currents,lW p

5lW p($kW %). The currentslW andlW 8 are identical to particular
lW p . In the one-loop example given in the preceding secti
there is one-loop currentlW and the twolW p as well aslW 8 are
identical tolW .

Of course, Eq.~3.35! splits up into a replica diagonal an
a replica independent part. Generalizing the arguments g
in Sec. III C 1, it is not difficult to deduce from Eq.~3.35!
thatx (2) vanishes at transition I to arbitrary order in the lo
expansion. The same goes forx (1) at transition II. Moreover,
one finds that thelW -featuring part of nonvanishing diagram
is of the structure

1

n (
$kW %

lW •lW 8expF2(
p

S spwlW p
22 iup (

a51

n

lp
(a)D G

5
1

n

]

w]z (
$kW %

expFzwlW •lW 8

2(
p

S spwlW p
22 iup (

a51

n

lp
(a)D GU

z50

. ~3.36!

In case of transition I,up are all zero. Figure 2 depicts thes
nonvanishing diagrams.

Now we move to the evaluation of Eq.~3.36!. Its right-
hand side factorizes inton equivalent factors. Exploiting the
fact thatlW p are linear functions of the loop currents, we wri

FIG. 2. General structure of the Feynman diagrams contribu
to the susceptibilities. The hatched blob symbolizes an arbit
number of closed loops composed of the vertex2g and conducting
and insulating propagators. To the left and the right of the blob,
have conducting propagators. The wavy lines indicate inser
points for external momenta into these propagators. The two

stand for a factorlW •lW 8.
04611
e

r-

,

en

1

n

]

w]z)a51

n

(
$k(a)%

expF2w(
l ,l 8

k l
(a)Al ,l 8~$s%,z!k l 8

(a)

1 i(
l

bl~$u%!k l
(a)GU

z50

~3.37!

for the right-hand side of Eq.~3.36!. The sums overl and l 8
run over the complete set of independent conducting lo
corresponding to$kW %. Al ,l 8($s%,z) and bl($u%) are linear
functions of their variables. In case of transition I,bl($u%)
are all zero. Since we are interested in the limitw→0, we
may apply Poisson’s summation formula, i.e., replace
summations ($k(a)% by integrations *2`

` dk (a). The so-
obtained integrations are Gaussian and hence straigh
ward. They yield

1

n

]

w]zF 1

Adet~wA= !
expS 2

1

4w
bTA= 21bD G nU

z50

.

~3.38!

Here, b stands for a column matrix constituted by th
bl($u%) andA= stands for a square matrix with the elemen
Al ,l 8($s%,z). We extract the limitn→0 by expanding Eq.
~3.38! in powers ofn and find, up to a minus sign,

]

2w]z F 1

2w
bTA= 21b1 ln det~wA= !GU

z50

5
1

4w2
bT~A= 21!8b1

1

2w

@det~A= !#8

det~A= !
. ~3.39!

In writing Eq. ~3.39!, we use the shorthand notations

~A= 21!85
]

]z
A= 21U

z50

,

@det~A= !#85
]

]z
det~A= !U

z50

. ~3.40!

The first term on the right-hand side of Eq.~3.39! is a ho-
mogeneous function of the Schwinger parameterssp of de-
gree21, i.e., is behaves generically likes21. The second
term is homogeneous in thesp of degree 0, i.e., it goes
generically likes0.

Now to the momentum-featuring part of our typical di
gram depicted in Fig. 2. Assume that the diagram haL
closed loops. Then the momentum integrations result i
factor that is a homogeneous function of the Schwinger
rameters of degree2Ld/2. In other words, the momentum
integrations yield a generic factors2Ld/2.

Next we turn to the integration over the Schwinger p
rameters. Assume that our diagram hasP propagators. Hav-
ing each propagator represented in Schwinger paramet
tion, we haveP integrations over Schwinger paramete
These may be viewed as a generic factorsP. Collecting, we
find that the term proportional tow21 in Eq. ~3.39! goes like

g
ry

e
n
rs
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sP2Ld/2 and that the term proportional tow22 goes like
sP2Ld/221. By inspection, one finds that the following topo
logic relations apply to our typical diagram:L5P2V21
and 3V1452P, whereV denotes the number of vertice
For thew21 term, these relations lead toP2L(d/2)52(d
26)/2V142d, i.e., atd56, this term goes generically like
s22. Similarly, one finds as23 behavior for thew22 term.
Now we have sufficient information to single out thet de-
pendence of the terms. By a change of variables of the t
s→s/t, we learn that thew21 term is associated with a
factor t2, whereas thew22 term features at3.

For transition II, we still have to deal with the integration
over theu ’s. These, however, merely result in purely n
meric factors. Harvesting the findings of the above reas
ing, we deduce that the divergent part susceptibilities h
the general structure

xdiv
(1)5

Tt2

w
X~u!, ~3.41!

xdiv
(2)5

Tt3

w2
Y~u!1

Tt2

w
X~u!. ~3.42!

It is understood that Eqs.~3.41! and~3.42! refer to transition
I and transition II, respectively. The coefficientsX(u) and
Y(u) have a Laurent expansion of the form

X~u!5 (
k51

`
Xk~u!

«k
with Xk~u!5 (

m>k21
Xk,mum,

~3.43!

Y~u!5 (
k51

`
Yk~u!

«k
with Yk~u!5 (

m>k21
Yk,mum,

~3.44!

with Xk,m andYk,m being numerical coefficients. As argue
in Sec. III C 1, Eqs.~3.41! and ~3.42! have to be supple
mented by terms varying as powers ofL. This gives finally

xdiv
(1)5

T

w
@A0~u!L41A1~u!L2t1X~u!t2#, ~3.45!

xdiv
(2)5

T

w
@A0~u!L41A1~u!L2t1X~u!t2#1

T

w2
@B0~u!L6

1B1~u!L4t1B2~u!L2t21Y~u!t3#, ~3.46!

whereA0(u), A1(u) and so on areu dependent coefficients

3. Renormalization and scaling

In Sec. III B, we argued that the order parameter corre
tion functions can be renormalized by the renormalizat
scheme~3.7!. This scheme, however, is not sufficient
renormalize the susceptibilities. To remove the« poles en-
countered in Secs. III C 1 and III C 2, one has to resort to
additive renormalization
04611
e

n-
e

-
n

n

Hren→Hren1
1

4
xdiv

(1),(2)E ddxFi , j~x!Fi , j~x!. ~3.47!

Here,Hren stands for the renormalized Hamiltonian obtain
form the original bare HamiltonianH by applying the renor-
malization scheme~3.7!. We point out that Eq.~3.47! is not
adequate to renormalize the free energy completely.
power counting shows, one also needs additive counterte
of third and fourth order inFi , j as well as counterterms con
taining derivatives ofFi , j . However, for our central task
i.e., for determining the scaling behavior of the susceptib
ties, it is sufficient to consider Eq.~3.47!. Hence, we neglec
the other just mentioned additive renormalizations. For
setup with the fixed external fieldB, Eq. ~3.47! implies for
the free energy that

Fren~B!→Fren~B!1
V

2
xdiv

(1),(2)B2. ~3.48!

According to definition~2.73!, this implies

x (1),(2)~t,w,g!→x° (1),(2)~t° ,w° ,g° !5x (1),(2)~t,w,u,m!

1x (1),(2)~t,w,u,m!div ~3.49!

for the susceptibilities.
Now we are in good shape to analyze the scaling beha

of the susceptibilities. In order to reduce the use of indic
and to keep the arguments as plain as possible, we carry
the following steps at the instance ofx (1). At the end, it will
be straightforward to adapt our arguments tox (2).

Just like the bare order parameter correlation functio

x° (1) has to be independent of the inverse length scalem, i.e.,
it satisfies the identity

m
]

]m
x° (1)~t° ,w° ,g° !50. ~3.50!

This identity is now taken as the origin of an RGE forx (1).
Expressing the bare quantities through their renormali
counterparts, one arrives initially at

Fm ]

]m
1b

]

]u
1tk

]

]t
1wz

]

]wG
3$x (1)~t,w,u,m!1x (1)~t,w,u,m!div%50.

~3.51!

Here it is important to realize that all the individual term
appearing in the RGE have to be free of« poles. All terms
associated with« poles must cancel order by order in th
loop expansion. Taking into account the form of the Laure
expansion~3.43!, the form of the Wilson functionb as given
in Eq. ~3.9b! and thatxdiv

(1);m2«, we obtain the RGE
5-14
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Fm ]

]m
1b

]

]u
1tk

]

]t
1wz

]

]wGx (1)~t,w,u,m!

5
Tt2

w
X̄1~u!m2«, ~3.52!

whereX̄1(u)m2«5(11u]u)X1(u).
Since the RGE~3.52! is inhomogeneous, its solution is o

the form

x (1)~t,w,u,m!5xh
(1)~t,w,u,m!1xp

(1)~t,w,u,m!,
~3.53!

wherexh
(1) is the general solution of the corresponding h

mogeneous equation andxp
(1) is a particular solution of the

inhomogeneous equation. At the fixed pointu* , the method
of characteristics gives for the homogeneous solution

xh
(1)~t,w,u,m!5xh

(1)~,k* t,,z* w,u* ,,m!, ~3.54!

wherek* 5k(u* ) and z* 5z(u* ). This solution has to be
complemented by a dimensional analysis,

xh
(1)~t,w,u,m!5md24xh

(1)~m22t,m22w,u,1!.
~3.55!

From Eqs.~3.54! and ~3.55!, we deduce that

xh
(1)~t,w,u,m!5,d24xh

(1)~,21/nt,,2f/nw,u* ,m!.
~3.56!

Exploiting our freedom to choose the flow parameter, we
,5utun. This choice yields

xh
(1)~t,w,u,m!5utu(d24)n f (1)~wutu2f! ~3.57!

with f (1) being a scaling function. Due to Eq.~3.41!, we
know that f (1)(x);x21. Thus, the homogeneous solutio
may be written as

xh
(1)~t,w,u,m!;

Tutu t22n

w
, ~3.58!

where t5(d22)n1f is the conductivity exponent of th
RRN.

A particular solution is readily found by making an ansa
that is as similar to the inhomogeneity as possible. We ob

xp
(1)~t,w,u,m!5

Tt2

w

X̄1* m2«

22«22/n1f/n
, ~3.59!

whereX̄1* 5X̄1(u* ).
Combiningxh

(1) , xp
(1) , and the terms varying as a pow

of L gives us the scaling behavior ofx (1), viz.,

x (1)5
T

w
@L41L2utu11utu2#1

Tutu t22n

w
, ~3.60!

where we have replaced nonuniversal coefficients, wh
might obscure the essential structure, by unity. Finally,
04611
-

et

in

h
e

recall that our coarse grained parameterw is proportional to
the temperature. Ignoring the proportionality constant,
thus get

x (1)5L41L2utu1utu21utu t22n. ~3.61!

The first terms correspond to the beginning of the smat
expansion of the regular part ofx (1). The last term charac
terizes the leading behavior of the singular part ofx (1). Note
that, over all, the leading smallt behavior ofx (1) is deter-
mined by its regular part. In passing, we mention that
coefficients of theutu2 term and the singular term form
universal amplitude ratio that may be calculated with help
Eq. ~3.59!

An analysis similar to the one presented in the previo
paragraphs can be applied tox (2). Since only slight modifi-
cations are required, we simply state the result

x (2)5L41L2utu1utu21
1

T
@L61L4utu1L2utu21utu3#

1
utu2t2dn

T
@11Tutu2f#, ~3.62!

where we have once more replaced unimportant constant
unity. As above, the regular part gives the leading smallutu
behavior.

IV. SUMMARY AND CONCLUDING REMARKS

In summary, we have studied the scaling behavior of
diamagnetic susceptibilityx (1) and the mean square fluctua
tions of the total magnetic momentx (2) of large clusters as
the Meissner~transition I! and the SG phases~transition II!
are approached asp→pc at low T. Our main results are
summarized by the formulas

x (1)5x reg
(1)1utu t22n, ~4.1!

x (2)50 ~4.2!

for transition I and

x (1)50, ~4.3!

x (2)5x reg
(2)1

utu2t2dn

T
@11Tutu2f# ~4.4!

for transition II. We remind the reader thatt measures the
distance from the respective transition,t;pc2p. n is the
percolation correlation length exponent andt andf are the
conductivity and the resistance exponent, respectively, of
RRN. x reg

(1) andx reg
(2) summarize the regular parts of the su

ceptibilities. These regular parts are very important and m
not be neglected. In fact, they determine the leading smat
behavior of x (1) and x (2). As far as the leading smallT
behavior is concerned, our results capture anticipated
tures of the susceptibilities. Typical for a diamagnetic s
ceptibility, x (1) approaches at transition I forT→0 a finite
constant.x (2) on the other hand diverges at transition II
T21. This is becausex (2) represents a paramagnetic rath
5-15
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than a diamagnetic susceptibility due to randomly froz
magnetic momenta in the spin-glass phase.

We point out that our results hold to an arbitrary order
« expansion. Using the powerful methods of renormaliz
field theory, we were able to explore general structural pr
erties of the Feynman diagrams contributing to the susce
bilities. This allowed us to determine the scaling behavior
x (1) andx (2) to arbitrary order in perturbation theory.

Our work reveals that the results by JLW are not entir
correct. On one hand, JLW overlooked the additive chara
of the renormalization of the susceptibilities that leads
regular contributions. On the other hand, JLW did not rea
that the coupling constantw2 associated withT2 can enter
the susceptibilities only in form of an irrelevant combinati
with w. This is true though and consequently exponents
sociated withT22 do not enter into the leading singular b
havior of the susceptibilities.

Closing, we would like to mention interesting issues f
future work. For example, one could extend our work
investigating the diamagnetism beyond transitions I and
i.e., for the other transitions featured in the phase diagram
the RJN. One might investigate the normal to supercond
ing transition asp→pc away from the immediate vicinity o
T50 @cf. the critical surface~1! in Fig. 1#. Using our Gauss-
ian propagator, this should be a feasible task. Another in
esting subject is the role of vortex excitations, which sho
be important in two dimensions. To address this quest
one has to develop an approach that avoids a linearizatio
the network equations. A potential strategy@12# is to devise a
Villain-type model@44# for the RJN.
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APPENDIX: THE PROPAGATOR

In this Appendix, we derive the Gaussian propagator
given in Eq.~3.1!. For notational simplicity, we setT51.

The task is to solve the differential equation

@t~lW !2~¹2 ilW •A¢ !2#G~x,x8,lW !5d~x2x8!. ~A1!

Here we use the shorthand notationt(lW )5t1wlW 2 intro-
duced in Sec. III A. Choosing for convenience the Land
gaugeA¢ (x)5BW (0,x,0'), Eq. ~A1! takes on the form

@t~lW !2¹212iv~lW !x]y1v~lW !2x2#G~x,x8,lW !5d~x2x8!.
~A2!

Inspired by Lawrie, we rewrite the propagator as

G~x,x8,lW !5expF i
v~lW !

2
~x1x8!~y2y8!GḠ~x,x8,lW !,

~A3!
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wherev(lW ) is the cyclotron frequency given in Eq.~2.79!.
Inserting the propagator~A3! into Eq. ~A2!, we get

H t~lW !2¹21 iv~lW !@~x2x8!]y2~y2y8!]x#1
v~lW !2

4

3@~x2x8!21~y2y8!2#J Ḡ~x,x8,lW !5d~x2x8!.

~A4!

From Eq.~A4!, we deduce thatḠ(x,x8,lW ) must be a func-
tion of the difference of the coordinatesx and x8, i.e.,
Ḡ(x,x8,lW )5Ḡ(x2x8,lW ). Hence, it is convenient to switch
to momentum space via the Fourier transformation

Ḡ~x,lW !5E
k
G̃~k,lW !exp~ ik•x!, ~A5!

with k5(p,q,k'). Since the system is rotationally invarian
in thex-y plane as well as in the hyperplane perpendicula
the x-y plane, we anticipate the following form in momen
tum space:G̃(k,lW )5G̃(p21q2,k'

2 ,lW ). Thus, Fourier trans-
formation of Eq.~A4! leads to

F t~lW !1k22
v~lW !2

4
@]p

21]q
2#GG̃~k,lW !51. ~A6!

For vanishing cyclotron frequency, this reduces to the w
known equation for the propagator of the RRN.
Schwinger representation, the RRN propagator reads

G̃~k,lW !5E
0

`

exp@2s~t~lW !1k2!#. ~A7!

However, our interest is not limited to the particular ca
v(lW )50. Hence, we generalize the solution~A7! by making
the ansatz

G̃~k,lW !5E
0

`

ds f~s!exp@2s~t~lW !1k'
2 !2g~s!~p21q2!#,

~A8!

with f (s) and g(s) being unknown functions of the
Schwinger parameters. We demand that

F t~lW !1k22
v~lW !2

4
@]p

21]q
2#GG̃~k,lW !

52E
0

`

ds
]

]s
$ f ~s!exp@2s~t~lW !1k'

2 !

2g~s!~p21q2!#%. ~A9!

For Eq.~A9! to be satisfied, the unknown functionsf (s) and
g(s) have to satisfy the differential equations

g8~s!512@v~lW !g~s!#2, ~A10!

2
f 8~s!

f ~s!
5v~lW !2g~s!, ~A11!
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along with the boundary conditionsf (0)51, g(0)50, and
g(s)>0. Of course, the two functions must yieldf (s)→1
andg(s)→0 for v(lW )→0. We find

g~s!5
tanh„v~lW !s…

v~lW !
, ~A12!
lin

n

J
th

ys

y

,

a

at-
rv

04611
f ~s!5
1

cosh„v~lW !s…
. ~A13!

Inserting these results into our ansatz~A8!, we obtain
G̃(k,lW ) as given in Eq.~3.1b!.
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